3.4.16 \(\int \frac {x^4 \sqrt {1+2 x^2+2 x^4}}{3+2 x^2} \, dx\) [316]

Optimal. Leaf size=424 \[ -\frac {1}{60} x \left (13-6 x^2\right ) \sqrt {1+2 x^2+2 x^4}+\frac {109 x \sqrt {1+2 x^2+2 x^4}}{60 \sqrt {2} \left (1+\sqrt {2} x^2\right )}+\frac {3}{16} \sqrt {15} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )-\frac {109 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{60\ 2^{3/4} \sqrt {1+2 x^2+2 x^4}}+\frac {\left (-70+263 \sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{60\ 2^{3/4} \left (-2+3 \sqrt {2}\right ) \sqrt {1+2 x^2+2 x^4}}+\frac {15 \left (3+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{16\ 2^{3/4} \left (2-3 \sqrt {2}\right ) \sqrt {1+2 x^2+2 x^4}} \]

[Out]

3/16*arctan(1/3*x*15^(1/2)/(2*x^4+2*x^2+1)^(1/2))*15^(1/2)-1/60*x*(-6*x^2+13)*(2*x^4+2*x^2+1)^(1/2)+109/120*x*
(2*x^4+2*x^2+1)^(1/2)*2^(1/2)/(1+x^2*2^(1/2))-109/120*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*
x))*EllipticE(sin(2*arctan(2^(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))
^2)^(1/2)*2^(1/4)/(2*x^4+2*x^2+1)^(1/2)+15/32*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*Elli
pticPi(sin(2*arctan(2^(1/4)*x)),1/2-11/24*2^(1/2),1/2*(2-2^(1/2))^(1/2))*(3+2^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2
*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(1/4)/(2-3*2^(1/2))/(2*x^4+2*x^2+1)^(1/2)+1/120*(cos(2*arctan(2^(1/4)*x))^2
)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticF(sin(2*arctan(2^(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(-70+263*2^(1/2))*(
1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(1/4)/(-2+3*2^(1/2))/(2*x^4+2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.37, antiderivative size = 619, normalized size of antiderivative = 1.46, number of steps used = 17, number of rules used = 9, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {1349, 1105, 1211, 1117, 1209, 1130, 1222, 1230, 1720} \begin {gather*} \frac {3}{16} \sqrt {15} \text {ArcTan}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {2 x^4+2 x^2+1}}\right )+\frac {45 \left (3+\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{112 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}-\frac {\left (1+\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{4\ 2^{3/4} \sqrt {2 x^4+2 x^2+1}}-\frac {139 \left (1-\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{240 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}-\frac {109 \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} E\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{60\ 2^{3/4} \sqrt {2 x^4+2 x^2+1}}-\frac {15 \left (3+\sqrt {2}\right )^2 \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{224 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}+\frac {1}{30} \left (3 x^2+1\right ) \sqrt {2 x^4+2 x^2+1} x+\frac {109 \sqrt {2 x^4+2 x^2+1} x}{60 \sqrt {2} \left (\sqrt {2} x^2+1\right )}-\frac {1}{4} \sqrt {2 x^4+2 x^2+1} x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^4*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

-1/4*(x*Sqrt[1 + 2*x^2 + 2*x^4]) + (x*(1 + 3*x^2)*Sqrt[1 + 2*x^2 + 2*x^4])/30 + (109*x*Sqrt[1 + 2*x^2 + 2*x^4]
)/(60*Sqrt[2]*(1 + Sqrt[2]*x^2)) + (3*Sqrt[15]*ArcTan[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/16 - (109*(1 + S
qrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(60
*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - (139*(1 - Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]
*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(240*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - ((1 + Sqrt[2
])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2]
)/4])/(4*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (45*(3 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 +
Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(112*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - (15*(
3 + Sqrt[2])^2*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24
, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(224*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4])

Rule 1105

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*((a + b*x^2 + c*x^4)^p/(4*p + 1)), x] + Dis
t[2*(p/(4*p + 1)), Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4
*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1130

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(d*x)^(m - 1)*(a + b*x^2
 + c*x^4)^p*((2*b*p + c*(m + 4*p - 1)*x^2)/(c*(m + 4*p + 1)*(m + 4*p - 1))), x] - Dist[2*p*(d^2/(c*(m + 4*p +
1)*(m + 4*p - 1))), Int[(d*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p - 1)*Simp[a*b*(m - 1) - (2*a*c*(m + 4*p - 1) - b^
2*(m + 2*p - 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && GtQ[m, 1] &&
 IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1222

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[-(e^2)^(-1), Int[(c*d -
 b*e - c*e*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] + Dist[(c*d^2 - b*d*e + a*e^2)/e^2, Int[(a + b*x^2 + c*x^4
)^(p - 1)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && IGtQ[p + 1/2, 0]

Rule 1230

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Di
st[(c*d + a*e*q)/(c*d^2 - a*e^2), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2)
, Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a
*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]

Rule 1349

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> In
t[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x]
 && NeQ[b^2 - 4*a*c, 0] && (IGtQ[p, 0] || IGtQ[q, 0] || IntegersQ[m, q])

Rule 1720

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[-b + c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*
e*Rt[-b + c*(d/e) + a*(e/d), 2])), x] + Simp[(B*d + A*e)*(A + B*x^2)*(Sqrt[A^2*((a + b*x^2 + c*x^4)/(a*(A + B*
x^2)^2))]/(4*d*e*A*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticPi[Cancel[-(B*d - A*e)^2/(4*d*e*A*B)], 2*ArcTan[q*x], 1
/2 - b*(A/(4*a*B))], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps

\begin {align*} \int \frac {x^4 \sqrt {1+2 x^2+2 x^4}}{3+2 x^2} \, dx &=\int \left (-\frac {3}{4} \sqrt {1+2 x^2+2 x^4}+\frac {1}{2} x^2 \sqrt {1+2 x^2+2 x^4}+\frac {9 \sqrt {1+2 x^2+2 x^4}}{4 \left (3+2 x^2\right )}\right ) \, dx\\ &=\frac {1}{2} \int x^2 \sqrt {1+2 x^2+2 x^4} \, dx-\frac {3}{4} \int \sqrt {1+2 x^2+2 x^4} \, dx+\frac {9}{4} \int \frac {\sqrt {1+2 x^2+2 x^4}}{3+2 x^2} \, dx\\ &=-\frac {1}{4} x \sqrt {1+2 x^2+2 x^4}+\frac {1}{30} x \left (1+3 x^2\right ) \sqrt {1+2 x^2+2 x^4}-\frac {1}{60} \int \frac {2-4 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{4} \int \frac {2+2 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {9}{16} \int \frac {2-4 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx+\frac {45}{8} \int \frac {1}{\left (3+2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx\\ &=-\frac {1}{4} x \sqrt {1+2 x^2+2 x^4}+\frac {1}{30} x \left (1+3 x^2\right ) \sqrt {1+2 x^2+2 x^4}-\frac {\int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx}{15 \sqrt {2}}+\frac {\int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx}{2 \sqrt {2}}-\frac {9 \int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx}{4 \sqrt {2}}-\frac {1}{30} \left (1-\sqrt {2}\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{8} \left (9 \left (1-\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{4} \left (2+\sqrt {2}\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx+\frac {1}{56} \left (45 \left (3+\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{56} \left (45 \left (2+3 \sqrt {2}\right )\right ) \int \frac {1+\sqrt {2} x^2}{\left (3+2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx\\ &=-\frac {1}{4} x \sqrt {1+2 x^2+2 x^4}+\frac {1}{30} x \left (1+3 x^2\right ) \sqrt {1+2 x^2+2 x^4}+\frac {109 x \sqrt {1+2 x^2+2 x^4}}{60 \sqrt {2} \left (1+\sqrt {2} x^2\right )}+\frac {3}{16} \sqrt {15} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )-\frac {109 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{60\ 2^{3/4} \sqrt {1+2 x^2+2 x^4}}-\frac {139 \left (1-\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{240 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}-\frac {\left (1+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{4\ 2^{3/4} \sqrt {1+2 x^2+2 x^4}}+\frac {45 \left (3+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{112 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}-\frac {15 \left (3+\sqrt {2}\right )^2 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{224 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 5.53, size = 209, normalized size = 0.49 \begin {gather*} \frac {-52 x-80 x^3-56 x^5+48 x^7-218 i \sqrt {1-i} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} E\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )-(199-417 i) \sqrt {1-i} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} F\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )+225 (1-i)^{3/2} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} \Pi \left (\frac {1}{3}+\frac {i}{3};\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )}{240 \sqrt {1+2 x^2+2 x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^4*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

(-52*x - 80*x^3 - 56*x^5 + 48*x^7 - (218*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticE[
I*ArcSinh[Sqrt[1 - I]*x], I] - (199 - 417*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF
[I*ArcSinh[Sqrt[1 - I]*x], I] + 225*(1 - I)^(3/2)*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticPi[1/3 +
 I/3, I*ArcSinh[Sqrt[1 - I]*x], I])/(240*Sqrt[1 + 2*x^2 + 2*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.17, size = 528, normalized size = 1.25

method result size
risch \(\frac {x \left (6 x^{2}-13\right ) \sqrt {2 x^{4}+2 x^{2}+1}}{60}+\frac {\left (-\frac {109}{120}+\frac {109 i}{120}\right ) \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \left (\EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )-\EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {199 \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{120 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {15 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{8 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(246\)
elliptic \(\frac {x^{3} \sqrt {2 x^{4}+2 x^{2}+1}}{10}-\frac {13 x \sqrt {2 x^{4}+2 x^{2}+1}}{60}-\frac {77 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{30 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {109 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{120 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {109 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{120 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {109 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{120 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {15 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{8 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(377\)
default \(\frac {x^{3} \sqrt {2 x^{4}+2 x^{2}+1}}{10}-\frac {13 x \sqrt {2 x^{4}+2 x^{2}+1}}{60}-\frac {8 \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{15 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {\left (\frac {13}{60}-\frac {13 i}{60}\right ) \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \left (\EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )-\EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {9 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{4 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {9 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{8 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {9 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{8 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {9 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{8 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {15 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{8 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(528\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x,method=_RETURNVERBOSE)

[Out]

1/10*x^3*(2*x^4+2*x^2+1)^(1/2)-13/60*x*(2*x^4+2*x^2+1)^(1/2)-8/15/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^
2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+(13/60-13/60*I)/(-1+I)^(1/2
)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*(EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^
(1/2))-EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2)))-9/4/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)
^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+9/8*I/(-1+I)^(1/2)*(1+x^2-I*x
^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+9/8/(-
1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+
1/2*I*2^(1/2))-9/8*I/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-
1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+15/8/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1
)^(1/2)*EllipticPi(x*(-1+I)^(1/2),1/3+1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x, algorithm="fricas")

[Out]

integral(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4} \sqrt {2 x^{4} + 2 x^{2} + 1}}{2 x^{2} + 3}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(2*x**4+2*x**2+1)**(1/2)/(2*x**2+3),x)

[Out]

Integral(x**4*sqrt(2*x**4 + 2*x**2 + 1)/(2*x**2 + 3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^4/(2*x^2 + 3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^4\,\sqrt {2\,x^4+2\,x^2+1}}{2\,x^2+3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4*(2*x^2 + 2*x^4 + 1)^(1/2))/(2*x^2 + 3),x)

[Out]

int((x^4*(2*x^2 + 2*x^4 + 1)^(1/2))/(2*x^2 + 3), x)

________________________________________________________________________________________